If it's not what You are looking for type in the equation solver your own equation and let us solve it.
39n^2+36n-42=0
a = 39; b = 36; c = -42;
Δ = b2-4ac
Δ = 362-4·39·(-42)
Δ = 7848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7848}=\sqrt{36*218}=\sqrt{36}*\sqrt{218}=6\sqrt{218}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-6\sqrt{218}}{2*39}=\frac{-36-6\sqrt{218}}{78} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+6\sqrt{218}}{2*39}=\frac{-36+6\sqrt{218}}{78} $
| 16+2s=6-4s | | 5x+2x=2x-8 | | 2/3m=1/9 | | 5x-2+6=-23 | | x+14=9x-4 | | 4-z=-9 | | 2.5=(75+5x)÷20 | | 28-5=2+3(x=3) | | t+6=20 | | 4x-1+2x+29=180 | | -43=4n-7 | | 0=-16x^2+70x | | x-26^-9=-3 | | -6x-3+9x=-7x+3 | | 6(x-11)=15-4x | | 4x=1,024 | | 3=-4/5x | | 3(x-8.1)=2x+1 | | 2^3x-25=-29 | | 18z=32 | | 3j–j=18 | | 14x=6(–4+x) | | -5w-16=-7w-28 | | Y=-0.002x^2+0.006x | | 5x-4+3x=4x+8 | | 2m÷3+8=m÷2-1 | | 2m+96=15m-8-5m | | F(x)=2x2+10x-8 | | 7x-3+2(x+2)=x+ | | 2x+2=1x+11 | | 6x-12=4x+181 | | w+3/10=2/5 |